This print-out should have 51 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

A complete neutralization reaction is performed by combining 200 mL 0.20 M LiOH and 100 mL 0.40 M nitrous acid $\left(\mathrm{HNO}_{2}\right)$. What is the pOH of the resulting solution?

1. 5.74 correct

2. 5.50
3. 1.90
4. 11.5
5. 8.26
6. 2.14

Explanation:

The complete neutralization of nitrous acid will end up with lithium nitrite (the salt of the conjugate base) as the dominant species in solution. You can first determine the K_{b} necessary for this problem:

$$
\begin{gathered}
K_{\mathrm{w}}=K_{\mathrm{a}} K_{\mathrm{b}} \\
K_{\mathrm{b}}=\frac{1 \times 10^{-14}}{4 \times 10^{-4}} \\
K_{\mathrm{b}}=2.5 \times 10^{-11}
\end{gathered}
$$

Then we can solve for the concentration $\left(C_{2}\right)$ of lithium nitrite in solution, accounting for the dilution involved in making the final solution:

$$
\begin{gathered}
C_{1} V_{1}=C_{2} V_{2} \\
C_{2}=\frac{(100 \mathrm{~mL})(0.40 \mathrm{M})}{300 \mathrm{~mL}} \\
C_{2}=0.133 \mathrm{M}
\end{gathered}
$$

Finally we can use the approximation formula to determine the number of hydroxide ions in solution, which will will use to solve for the pOH:

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{K_{\mathrm{b}} \times C_{\mathrm{b}}}
$$

$$
\begin{gathered}
0.00000182574 \mathrm{M}=\sqrt{K_{\mathrm{b}} \times 0.133} \\
\mathrm{pOH}=-\log (0.00000182574) \\
\mathrm{pOH}=5.74
\end{gathered}
$$

$002 \quad 10.0$ points

What is the pH of a $0.07 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ aqueous solution?

1. 13.1461 correct

2. 8.7
3. 0.853872
4. 1.31461
5. 9.8596

Explanation:

$\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=0.15 \mathrm{M}$
$\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base which dissociates in aqueous solution to produce two moles of OH^{-}for every mole of $\mathrm{Ba}(\mathrm{OH})_{2}$, so 0.07 M $\mathrm{Ba}(\mathrm{OH})_{2}$ produces $0.14 \mathrm{M} \mathrm{OH}^{-}$.

	$\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow$	Ba^{2+}	+
ini	0.07 M	0 M	$0 \mathrm{OH}^{-}$
Δ	-0.07 M	+0.07 M	$2(0.07 \mathrm{M})$
fin	0 M	+0.07 M	+0.14 M
$\mathrm{pH}=14-\mathrm{pOH}=14-(-\log 0.14)=13.1461$			

$003 \quad 10.0$ points

What is $\left[\mathrm{OH}^{-}\right]$in a 0.0050 M HCl solution?

1. $6.6 \times 10^{-5} \mathrm{M}$
2. $1.0 \times 10^{-7} \mathrm{M}$
3. $2.0 \times 10^{-12} \mathrm{M}$ correct
4. 1.0 M
5. $5.0 \times 10^{-3} \mathrm{M}$

Explanation:

$\left[\mathrm{OH}^{-}\right]=0.0050 \mathrm{M}$

Since HCl is a strong acid, it completely dissociates and H^{+}is 0.0050 M .

$$
\begin{gathered}
\mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}} \\
=\frac{1 \times 10^{-14}}{0.0050}=2 \times 10^{-12} \mathrm{M} \\
\hline \text { If the value of } K_{\mathrm{b}} \text { for pyridine is } 1.8 \times 10^{-9}, \\
\text { calculate the equilibrium constant for } \\
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) .
\end{gathered}
$$

1. 1.8×10^{-16}
2. 5.6×10^{8}
3. -1.8×10^{-9}
4. 5.6×10^{-6} correct
5. 1.8×10^{-9}

Explanation:

$005 \quad 10.0$ points

For the neutralization reaction involving HCl and $\mathrm{Mg}(\mathrm{OH})_{2}$, how many liters of 0.60 M HCl are needed to react with 45 g of a 2.5 M $\mathrm{Mg}(\mathrm{OH})_{2}$ solution? $($ density $=1.3 \mathrm{~g} / \mathrm{mL})$

1. 0.011 L
2. 0.12 L
3. 0.29 L correct
4. 120 L
5. 0.14 L
6. 0.49 L

Explanation:

$[\mathrm{HCl}]=0.60 \mathrm{M} \quad \mathrm{m}_{\mathrm{HCl}}=45 \mathrm{~g}$
$\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=2.5 \mathrm{M} \quad$ density $=1.3 \mathrm{~g} / \mathrm{mL}$
The balanced equation for this neutralization reaction is:

$$
2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

We use the density to determine the volume of the $\mathrm{Mg}(\mathrm{OH})_{2}$ solution:

$$
\begin{aligned}
? \mathrm{~L} \mathrm{Mg}(\mathrm{OH})_{2} \text { soln }= & 45 \mathrm{~g} \text { soln } \\
& \times \frac{0.001 \mathrm{~L} \text { soln }}{1.3 \mathrm{~g} \text { soln }} \\
= & 0.0346 \mathrm{~L} \text { soln }
\end{aligned}
$$

We use the molarity to convert from L of solution to moles $\mathrm{Mg}(\mathrm{OH})_{2}$:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}= & 0.0346 \mathrm{~L} \mathrm{soln} \\
& \times \frac{2.5 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}{1 \mathrm{~L} \mathrm{soln}} \\
= & 0.0865 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}
\end{aligned}
$$

Using the mole ratio from the chemical equation we calculate the moles of HCl needed to react with this amount of $\mathrm{Mg}(\mathrm{OH})_{2}$:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{HCl}= & 0.0865 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2} \\
& \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}} \\
= & 0.173 \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

We use the molarity to find the volume of HCl solution needed to provide 0.173 mol HCl :

$$
\begin{aligned}
? \mathrm{~L} \mathrm{HCl} & =0.173 \mathrm{~mol} \mathrm{HCl} \times \frac{1 \mathrm{~L} \mathrm{soln}}{0.60 \mathrm{~mol} \mathrm{HCl}} \\
& =0.29 \mathrm{~L} \mathrm{HCl}
\end{aligned}
$$

$006 \quad 10.0$ points

The conjugate pair of F^{-}is a...

1. weak acid correct
2. strong acid
3. strong base
4. weak base
5. neutral salt

Explanation:

HF is a weak acid. HClO_{3} is a strong acid. HSO_{4}^{-}is a weak acid.

$007 \quad 10.0$ points

Hydroxylamine is a weak molecular base with $K_{\mathrm{b}}=6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of hydroxylamine?

1. $\mathrm{pH}=8.93$
2. $\mathrm{pH}=9.48$
3. $\mathrm{pH}=7.12$
4. $\mathrm{pH}=10.37$
5. $\mathrm{pH}=9.26$ correct
6. $\mathrm{pH}=3.63$
7. $\mathrm{pH}=4.74$

Explanation:

Hydroxylamine is a weak base, so use the equation to calculate weak base $\left[\mathrm{OH}^{-}\right]$concentration (note that this is the approximate equation. Why? Because K_{b} is very small and the concentration is reasonable) :

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{K_{\mathrm{b}} C_{\mathrm{b}}} \\
& =\sqrt{\left(6.6 \times 10^{-9}\right)(0.0500)} \\
& =1.82 \times 10^{-5}
\end{aligned}
$$

After finding $\left[\mathrm{OH}^{-}\right.$, you can find pH using either method below:
A)

$$
\mathrm{pOH}=-\log \left(1.82 \times 10^{-5}\right)=4.74
$$

$$
\mathrm{pH}=14-4.74=9.26
$$

or B)

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right] }=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} \\
&=\frac{1.0 \times 10^{-14}}{1.82 \times 10^{-5}}=5.52 \times 10^{-10} \\
& \mathrm{pH}=-\log \left(5.52 \times 10^{-10}\right)=9.26 \\
& \mathbf{0 0 8} \mathbf{1 0 . 0} \text { points }
\end{aligned}
$$

What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$?

1. $6.6 \times 10^{-5} \mathrm{M}$
2. $3.3 \times 10^{-9} \mathrm{M}$
3. $3.0 \times 10^{-6} \mathrm{M}$ correct
4. $3.3 \times 10^{-5} \mathrm{M}$
5. $1.0 \times 10^{-7} \mathrm{M}$

Explanation:

$\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$

$$
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{14}
$$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} \\
& =\frac{1.0 \times 10^{14}}{3.3 \times 10^{-9}}=3.0 \times 10^{-6} \mathrm{M}
\end{aligned}
$$

$009 \quad 10.0$ points

Calculate the resulting pH if 365 mL of 2.88 $\mathrm{M} \mathrm{HNO}_{3}$ is mixed with 335 mL of 1.10 M $\mathrm{Ca}(\mathrm{OH})_{2}$ solution.

1. 1.46
2. 0.460
3. 2.36
4. 7.20
5. 0.067
6. 0.350 correct

Explanation:

$V_{\mathrm{HNO}_{3}}=365 \mathrm{~mL}$
$\left[\mathrm{HNO}_{3}\right]=2.88 \mathrm{M}$
$V_{\mathrm{Ca}(\mathrm{OH})_{2}}=335 \mathrm{~mL} \quad\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=1.10 \mathrm{M}$
To determine the pH of the final mixture, we need to determine how much H or OH is left over after the reaction. Remember that for complete neutralization we need H and OH in equal molar amounts:

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

First calculate how many moles of H^{+}and
OH^{-}we have:

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{H}^{+}=0.365 \mathrm{~L} \times \frac{2.88 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~L}} \\
& \times \frac{1 \mathrm{~mol} \mathrm{H}^{+}}{1 \mathrm{~mol} \mathrm{HNO}_{3}} \\
& =1.05 \mathrm{~mol} \mathrm{H}^{+} \\
& ? \mathrm{~mol} \mathrm{OH}{ }^{-}=0.335 \mathrm{~L} \times \frac{1.10 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~L}} \\
& \times \frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}} \\
& =0.737 \mathrm{~mol} \mathrm{OH}^{-}
\end{aligned}
$$

Now we can see that we have more H^{+}than OH^{-}so OH^{-}will be consumed and H^{+}will be left over. Let's find out by how much:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{H} & \\
& =1.05 \mathrm{~mol}-0.737 \mathrm{~mol} \\
& =0.313 \mathrm{~mol} \mathrm{H}^{+}
\end{aligned}
$$

The next step is to calculate the $\left[\mathrm{H}^{+}\right]$:

$$
\begin{gathered}
? \mathrm{M} \mathrm{H}^{+}=\frac{0.313 \mathrm{~mol} \mathrm{H}^{+}}{0.700 \mathrm{~L}} \\
=0.447 \mathrm{M} \mathrm{H}^{+} \\
\mathrm{pH}=-\log [0.447]=0.350
\end{gathered}
$$

$010 \quad 10.0$ points

181 mL of an unknown HCl solution was neutralized in a titration with 36.2 mL of 0.250 M NaOH . What is the molarity of the unknown HCl solution?

1. $5.00 \times 10^{-2} \mathrm{M}$ correct
2. $8.00 \times 10^{-1} \mathrm{M}$
3. $9.05 \times 10^{-2} \mathrm{M}$
4. $1.64 \times 10^{3} \mathrm{M}$
5. $2.50 \times 10^{-1} \mathrm{M}$

Explanation:

$V_{\mathrm{HCl}}=181 \mathrm{~mL}$

$$
V_{\mathrm{NaOH}}=36.2 \mathrm{~mL}
$$

$[\mathrm{NaOH}]=0.250 \mathrm{M}$
The balanced equation for this neutralization reaction is

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

We determine the moles of NaOH used:

$$
? \mathrm{~mol} \mathrm{NaOH}=0.0362 \mathrm{~L} \text { soln }
$$

$$
\begin{aligned}
& \times \frac{0.250 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L} \mathrm{soln}} \\
= & 0.00905 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

From the $1: 1$ mole ratio in the balanced chemical reaction we know we would need 0.00905 moles of NaOH to neutralize 0.00905 moles HCl . This is the amount of HCl that must have been in the 181 mL sample. Molarity is moles solute per liter of solution:

$$
\begin{aligned}
? \mathrm{M} \mathrm{HCl} & =\frac{0.00905 \mathrm{~mol} \mathrm{NaOH}}{0.181 \mathrm{~L} \text { solution }} \\
& =0.05 \mathrm{M} \mathrm{HCl}
\end{aligned}
$$

$011 \quad 10.0$ points

Which of the following is the WEAKEST acid?

1. HClO_{2}

2. HClO correct

3. HNO_{3}

4. HClO_{4}

Explanation:

$012 \quad 10.0$ points

Which equation represents $K_{\mathrm{a} 2}$ for sulfurous acid?

$$
\begin{aligned}
& \text { 1. } \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

2. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

3. $\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \text { correct }
$$

4. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{SO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

5. $\mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$
 $\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Explanation:

01310.0 points

A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of 3.00 at room temperature. What is the ionization constant of this acid?

1. 5.30
2. 1.0×10^{-3}
3. 1.8×10^{-5}
4. 5.0×10^{-6} correct
5. 5.0×10^{-3}
6. 2.0×10^{-5}
7. 1.0×10^{-6}
8. 2.0×10^{-9}

Explanation:

$014 \quad 10.0$ points

At $25^{\circ} \mathrm{C}$, water solutions which are neutral have a pH of

1. about 7. correct
2. about 0 .
3. about 14 .
4. infinity.

Explanation:

015 (part 1 of 2) 10.0 points
Calculate the pH of the solute in an aqueous solution of $0.45 \mathrm{M} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})$ (pyridine) if the K_{b} is 1.8×10^{-9}.

1. 9.51306
2. 9.49978
3. 9.05019
4. 9.52207
5. 9.07918
6. 9.27815
7. 9.49181
8. 9.47273
9. 9.53576
10. 9.45424

Your answer must be within ± 0.005.
Correct answer: 9.45424.

Explanation:

$C_{\text {pyridine }}^{\circ}=0.45 \mathrm{M}$
$K_{\mathrm{b}}=1.8 \times 10^{-9}$

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}+\mathrm{OH}^{-}$			
0.45	-	0	0
$-x$	-	$+x$	$+x$
$0.45-x$	-	x	x

$$
\begin{aligned}
K_{\mathrm{b}} & =\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]} \\
1.8 \times 10^{-9} & =\frac{x^{2}}{0.45-x} \approx \frac{x^{2}}{0.45} \\
x=\left[\mathrm{OH}^{-}\right] & =\sqrt{0.45\left(1.8 \times 10^{-9}\right)} \\
& =2.84605 \times 10^{-5} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

The pOH is
$\mathrm{pOH}=-\log \left(2.84605 \times 10^{-5}\right)=4.54576$,
and the pH is

$$
\mathrm{pH}=14-4.54576=9.45424
$$

016 (part 2 of 2) 10.0 points
What is the percentage protonation of the solute?

1. 0.0080904
2. 0.00518321
3. 0.00632456
4. 0.00733017
5. 0.00781133
6. 0.00524222
7. 0.0107763
8. 0.00884652
9. 0.00914991
10. 0.00569495

Correct answer: 0.00632456%.

Explanation:

$$
\begin{aligned}
\% \text { protonation } & =\frac{[\text { protonated species }]}{C_{\mathrm{pyridine}}^{\circ}} \\
& =\frac{2.84605 \times 10^{-5}}{0.45} \times 100 \% \\
& =0.00632456 \%
\end{aligned}
$$

Assuming that $x \ll 0.0322 \mathrm{M}$,

$$
\begin{aligned}
K_{\mathrm{a} 1} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
4.3 \times 10^{-7} & =\frac{x^{2}}{0.0322-x} \approx \frac{x^{2}}{0.0322} \\
x & =\sqrt{(0.0322)\left(4.3 \times 10^{-7}\right)} \\
& =0.000117669 \mathrm{M}
\end{aligned}
$$

Because $x<1 \%$ of 0.0322 M , the assumption was valid, so

$$
x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]=0.000117669 \mathrm{M}
$$

$018 \quad 10.0$ points

What is the pH of a $0.036 \mathrm{M} \mathrm{HNO}_{3}$ solution?

1. 2.72

2. 5.36
3. 12.56
4. 2.88
5. 1.64
6. 1.44 correct
7. 1.36
8. 5.56

Explanation:

For a strong acid:

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
1.44=-\log (0.036)
\end{gathered}
$$

$019 \quad 10.0$ points

What is the pH of a 0.37 M solution of anilinium nitrate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}\right)$? K_{b} for aniline is 4.2×10^{-10}.

1. 2.53959
2. 2.62152
3. 2.75465
4. 2.70956
5. 2.73856
6. 2.55905
7. 2.60414
8. 2.67225
9. 2.52752
10. 2.58043

Your answer must be within $\pm 0.4 \%$
Correct answer: 2.52752.

Explanation:

$M_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}}=0.37 \mathrm{M} \quad K_{\mathrm{b}}=4.2 \times 10^{-10}$
It's a salt of a weak base (BHX). This means you need a K_{a} for the weak acid BH^{+}:

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{K_{\mathrm{w}}}{K_{\mathrm{b}}} \\
& =\frac{1.0 \times 10^{-14}}{4.2 \times 10^{-10}} \\
& =2.38095 \times 10^{-5}
\end{aligned}
$$

You CAN use the approximation for the equilibrium which means that

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{K_{\mathrm{a}} \cdot C_{\mathrm{BH}^{+}}} \\
& =\sqrt{\left(2.38095 \times 10^{-5}\right)(0.37)} \\
& =0.00296808 \mathrm{M} \\
\mathrm{pH}= & -\log (0.00296808)=2.52752
\end{aligned}
$$

$020 \quad 10.0$ points

The ΔH° for the autoionization of water is $55.7 \mathrm{~kJ} / \mathrm{mol}$. Which of the following is/are true regarding the autoionization of pure water at $37^{\circ} \mathrm{C}$?
I) The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$will be greater at $37^{\circ} \mathrm{C}$ than at standard conditions
II) $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
III) K_{w} is equal to 1×10^{-14}
IV) The concentration of OH^{-}will be lower at $37^{\circ} \mathrm{C}$ than standard conditions

1. I, II, and III

2. I and II correct

3. II and IV
4. III only
5. II only
6. I, II, and IV

Explanation:

The autoionization of water is an endothermic process. Therefore, the reaction will shift to the products when the temperature increases. In this process, K_{w} will increase. At $37^{\circ} \mathrm{C}$, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and $\left[\mathrm{OH}^{-}\right]$ will be greater. However, at any given temperature $\left[\mathrm{OH}^{-}\right]$must equal $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for pure water.

$021 \quad 10.0$ points

Which of the following can exhibit amphoterism?

$$
\text { 1. } \mathrm{CrO}_{4}^{2-}
$$

2. HClO_{4}
3. HPO_{4}^{2-} correct
4. Sn^{2+}
5. O^{2-}

Explanation:

$022 \quad 10.0$ points

Consider the fractional composition diagram for the amino acid alanine.

What is the structure of the dominant species at pH 6 ?

1. ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}$correct
2. ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$
3. $\mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}$

Explanation:

To the left of 2.348, the red graph representing $\mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}$is dominant.

Between 2.348 and 9.867 , the blue graph representing ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+} \quad$ is dominant.

To the right of 9.867 , the green graph representing ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$ is dominant.

$023 \quad 10.0$ points

Trichloroacetic acid is a harsh chemical, typically used for cosmetic treatments such as tattoo removal. What is the pH of a .0800 M trichloroacetic acid solution $\left(\mathrm{CCl}_{3} \mathrm{COOH}\right)$?

1. 2.000
2. 1.097
3. 0.990
4. 0.824
5. 1.205 correct
6. 2.019

Explanation:

Due to the large size of K_{a}, you will need to solve the full quadratic equation to get the correct answer. For .0800 M trichloroacetic acid solution, the quadratic will net $\left[\mathrm{H}^{+}\right]=$ 0.0623369 M . Therefore, your pH will $=1.205$.

$024 \quad 10.0$ points

What is the hydroxide concentration $\left[\mathrm{OH}^{-}\right]$in an aqueous solution in which the hydronium ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is $1 \times 10^{-5} \mathrm{M}$?

1. $1 \times 10^{-9} \mathrm{M}$ correct
$2.1 \times 10^{-14} \mathrm{M}$
2. $1 \times 10^{-5} \mathrm{M}$
3. $1 \times 10^{-7} \mathrm{M}$

Explanation:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-5} \mathrm{M}$

$$
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
$$

$$
=\frac{1.0 \times 10^{-14}}{1 \times 10^{-5}}=1 \times 10^{-9} \mathrm{M}
$$

$025 \quad 10.0$ points

In the following equation, water is acting as a(n)...

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq}) & +\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

1. Acid correct

2. Base

3. Neither

Explanation:

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$is a base and accepts a proton from $\mathrm{H}_{2} \mathrm{O}$. Therefore $\mathrm{H}_{2} \mathrm{O}$ acts as an acid.

$026 \quad 10.0$ points

The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration. What is the K_{a} of this acid?

1. 1.43×10^{-3}
2. 4.54×10^{-4}
3. 2.50×10^{-4}
4. 5.97×10^{-4}
5. 3.27×10^{-4} correct

Explanation:

For a generic weak acid, the K_{a} expression is:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Starting with 0.025 M HA, your values are:

$$
[\mathrm{HA}]=0.025 \mathrm{M}-(0.108 \cdot 0.025 \mathrm{M})=0.022300 \mathrm{M}
$$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=0.00270 \mathrm{M}} \\
K_{\mathrm{a}}=\frac{0.00270^{2}}{0.022300} \\
K_{\mathrm{a}}=0.000327
\end{gathered}
$$

$027 \quad 10.0$ points

A student titrated a sample containing 107 mL of 0.28 M NaOH with 0.72 M HCl . What is the pH of the solution after 23 mL of the hydrochloric acid has been added?

1. 13.02 correct
2. 0.98
3. -0.02
4. 7
5. 14.02

Explanation:

$V_{\mathrm{NaOH}}=107 \mathrm{~mL}$

$$
[\mathrm{NaOH}]=0.28 \mathrm{M}
$$

$V_{\mathrm{HCl}}=23 \mathrm{~mL}$
$[\mathrm{HCl}]=0.72 \mathrm{M}$
Initially
$n_{\mathrm{NaOH}}:(107 \mathrm{~mL})(0.28 \mathrm{M})=29.96 \mathrm{mmol}$
$n_{\mathrm{HCl}}:(23 \mathrm{~mL})(0.72 \mathrm{M})=16.56 \mathrm{mmol}$

$$
\mathrm{NaOH}+\mathrm{HCl} \quad \rightarrow \mathrm{NaCl}
$$

$$
+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right]=-\log (0.103)=0.98 \\
\mathrm{pH} & =14-\mathrm{pOH}=14-0.98=13.02
\end{aligned}
$$

$028 \quad 10.0$ points
What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in a 0.20 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$?

1. 0.40 M
2. $2.5 \times 10^{-14} \mathrm{M}$ correct
3. $1 \times 10^{-13} \mathrm{M}$
4. $1.2 \times 10^{-14} \mathrm{M}$
5. 0.20 M
6. $3.7 \times 10^{-14} \mathrm{M}$

Explanation:

$0.20 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ completely dissociates in aqueous solution to give a total hydroxide concentration equal to 0.40 M . You can use the following expression to solve for $\left[\mathrm{OH}^{-}\right]$:

$$
\begin{gathered}
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}} \\
2.5 \times 10^{-14} \mathrm{M}=\frac{1 \times 10^{-14}}{0.40 \mathrm{M}}
\end{gathered}
$$

$029 \quad 10.0$ points

A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the solution?

1. 0.55
2. 5.25

3. 2.01 correct

4. 3.17
5. 1.46

Explanation:

$M=0.28 \mathrm{M}$ $P=3.5 \%$
3.5% of the 0.28 M is ionized (contributes to pH), so

$$
\left[\mathrm{H}^{+}\right]=(0.28 \mathrm{M}) \times \frac{3.5}{100}=0.0098 \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.0098)=2.00877
$$

$030 \quad 10.0$ points

The hydronium ion concentration in a solution at pH 10 has what relationship to the hydronium ion concentration in a solution at pH 13 ?

1. 3 times greater than
2. 100 times less than
3. 1,000 times less than
4. 1,000 times greater than correct

Explanation:

For $\mathrm{pH} 10, M_{\mathrm{H}^{+}}=1 \times 10^{-10}$
For $\mathrm{pH} 13, M_{\mathrm{H}^{+}}=1 \times 10^{-13}$

$031 \quad 10.0$ points

List the the following solution species in order of increasing acidity (weakest acid to strongest acid). Important note: measure the acidity/basicity of the solution species as written.
$\mathrm{HCN} \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+} \quad \mathrm{HIO} \quad \mathrm{NH}_{4}^{+}$

1. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{HIO}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}$
2. $\mathrm{HIO}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}$ correct
3. $\mathrm{HCN}<\mathrm{NH}_{4}^{+}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{HIO}$
4. $\mathrm{HIO}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$
5. $\mathrm{HCN}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{HIO}<\mathrm{NH}_{4}^{+}$
6. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}<\mathrm{HIO}$

Explanation:

Look at the coversheet for the values of $\mathrm{p} K_{\mathrm{a}}$ and $\mathrm{p} K_{\mathrm{b}}$. The following information is provided:

$$
\begin{aligned}
& \mathrm{HCN}, \mathrm{p} K_{\mathrm{a}}=9.21 \\
& \mathrm{HIO}, \mathrm{p} K_{\mathrm{a}}=10.7 \\
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{p} K_{\mathrm{b}}=4.19 \\
& \mathrm{NH}_{3}, \mathrm{p} K_{\mathrm{b}}=4.74
\end{aligned}
$$

The question either asks for increasing base strength or increasing acid strength. For acids, you are comparing the $\mathrm{p} K_{\mathrm{a}}$ values:

HCN, $\mathrm{p} K_{\mathrm{a}}=9.21$
HIO, $\mathrm{p} K_{\mathrm{a}}=10.7$

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}, \mathrm{p} K_{\mathrm{a}}=14-4.19=9.81 \\
& \mathrm{NH}_{4}^{+}, \mathrm{p} K_{\mathrm{a}}=14-4.74=9.3
\end{aligned}
$$

This gives the rank: $\mathrm{HIO}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<$ $\mathrm{NH}_{4}^{+}<\mathrm{HCN}$
For bases, you are comparing the $\mathrm{p} K_{\mathrm{b}}$ values:

$$
\begin{aligned}
& \mathrm{CN}^{-}, \mathrm{p} K_{\mathrm{b}}=14-9.21=4.79 \\
& \mathrm{IO}^{-}, \mathrm{p} K_{\mathrm{b}}=14-10.7=3.3 \\
& \left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{p} K_{\mathrm{b}}=4.19 \\
& \mathrm{NH}_{3}, \mathrm{p} K_{\mathrm{b}}=4.74
\end{aligned}
$$

This gives the opposite rank: $\mathrm{CN}^{-}<\mathrm{NH}_{3}<$ $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}<\mathrm{IO}^{-}$

$032 \quad 10.0$ points

According to the Bronsted-Lowry Theory of acids and bases, a base is

1. a substance which when dissolved in water yields OH^{-}.
2. an electron acceptor.
3. a proton donor.
4. a proton acceptor. correct
5. an electron donor.

Explanation:

Bases are defined by the Arrhenius theory as substances which in water produce hydroxide ions, by the Bronsted-Lowry theory as substances which accept protons, and by the Lewis theory as substances which provide electron pairs.

$033 \quad 10.0$ points

A 50.0 mL sample of 6 M HCl is added to 100.0 mL of 1.2 M NaOH . What is the pH of the resulting solution?

1. 0.09
2. 1.20
3. -0.08 correct
4. 0.18
5. -1.20

Explanation:

$V_{\mathrm{HCl}}=50.0 \mathrm{~mL}$
$[\mathrm{HCl}]=6 \mathrm{M}$
$V_{\mathrm{NaOH}}=100.0 \mathrm{~mL}$ $[\mathrm{NaOH}]=1.2 \mathrm{M}$
$n_{\mathrm{HCl}}=(0.05 \mathrm{~L})(6 \mathrm{M})=0.3 \mathrm{~mol}$
$n_{\mathrm{NaOH}}=(0.1 \mathrm{~L})(1.2 \mathrm{M})=0.12 \mathrm{~mol}$

	HCl	$+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$		
ini, mol	0.3	0.12	0	0
Δ, mol	-0.12	-0.12	0.12	0.12
fin, mol	0.18	0	0.12	0.12

HCl is a strong acid, Na^{+}and Cl^{-}are spectator ions.

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{0.18 \mathrm{~mol}}{0.150 \mathrm{~L}}=1.2 \mathrm{M}} \\
\mathrm{pH}=-\log (1.2 \mathrm{M})=-0.0791812
\end{gathered}
$$

$034 \quad 10.0$ points
The term " K_{a} for the ammonium ion" describes the equilibrium constant for which of the following reactions?

1. $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$correct
3. The term is misleading, because the ammonium ion is not an acid.
4. $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{NH}_{4} \mathrm{Cl}($ solid $)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
6. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

Explanation:

$035 \quad 10.0$ points

The pH of 0.010 M aniline (aq) is 8.32 .
What is the percentage aniline protonated?

1. 0.69%
2. 2.1%

3. 0.21%

4. 0.12%
5. 0.021% correct

Explanation:

$036 \quad 10.0$ points

What is the conjugate acid of NO_{3}^{-}?

1. $\mathrm{NO}_{2}{ }^{-}$
2. H^{+}
3. $\mathrm{NO}_{3}{ }^{2-}$
4. NH_{3}
5. OH^{-}

6. HNO_{3} correct

Explanation:

Since the question asks for the conjugate acid, we can assume NO_{3}^{-}is acting as a base. This means that it is a proton acceptor. To form the conjugate acid, it accepts a H making HNO_{3}.

$037 \quad 10.0$ points

Write the charge balance equation for a dilute aqueous solution of HI .

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{I}^{-}\right]$
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
3. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{I}^{-}\right]+\left[\mathrm{OH}^{-}\right]$correct
4. $\left[\mathrm{I}^{-}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
5. $[\mathrm{HI}]_{\text {initial }}=\left[\mathrm{I}^{-}\right]$

Explanation:

$038 \quad 10.0$ points

Which is NOT a conjugate acid-base pair?

1. $\mathrm{HCl}: \mathrm{Cl}^{-}$
2. 10.604
3. $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}: \mathrm{H}_{2} \mathrm{SO}_{4}$
4. $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{SO}_{4}^{2-}$ correct
5. $\mathrm{H}_{2}: \mathrm{H}^{-}$

5. $\mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}$

Explanation:

Except for $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{4}^{2-}, the members of all of the pairs differ by one proton.

$039 \quad 10.0$ points

Assume that five weak acids, identified only by numbers ($1,2,3,4$, and 5), have the following ionization constants.

Acid	Ionization Constant K_{a} value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the strongest base?

1. 1
2.5 correct
2. 3
3. 4
4. 2

Explanation:

$040 \quad 10.0$ points

What is the pH of a 0.24 M solution of potassium generate (KR-COO)? K_{a} for the generic $\operatorname{acid}(\mathrm{R}-\mathrm{COOH})$ is 2.7×10^{-8}.

1. 3.526
2. 7.000
3. 6.431
4. 10.234
5. 10.474 correct
6. 10.844
7. 3.396
8. 7.569
9. 10.324

Explanation:

$M_{\mathrm{KR}-\mathrm{COO}}=0.24 \mathrm{M} \quad K_{\mathrm{a}}=2.7 \times 10^{-8}$ It's a salt of a weak generic acid (KA). Get it? Generic acid makes generic ions. Ha! This means you need a K_{b} for the weak base A^{-}. Use $K_{\mathrm{b}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}$ and you'll get the $K_{\mathrm{b}}=3.7037 \times 10^{-7}$. You CAN use the approximation for the equilibrium which means that

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\sqrt{K_{\mathrm{b}} \cdot C_{\mathrm{A}^{-}}}=0.000298142 \mathrm{M}} \\
& \begin{aligned}
& \mathrm{pH}=14-\mathrm{pOH} \\
& \quad=14+\log (0.000298142)=10.4744
\end{aligned}
\end{aligned}
$$

$041 \quad 10.0$ points
For a solution labeled " $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$, "

1. $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$is greater than 0.10 M .
2. $\left[\mathrm{PO}_{4}^{3-}\right]=0.10 \mathrm{M}$.
3. $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$.
4. $\left[\mathrm{H}^{+}\right]$is less than 0.10 M . correct
5. $\left[\mathrm{H}^{+}\right]=0.30 \mathrm{M}$.

Explanation:

Which of the following is true in pure water at any temperature?

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$correct
3. $\mathrm{pH}=7.0$ or greater than 7.0
4. K_{w} decreases with increasing temperature.
5. $\mathrm{pH}=7.0$

Explanation:

K_{w} is shown to INCREASE with increasing temperature. $\mathrm{pH}=7$ is only true when water is at $24^{\circ} \mathrm{C} .\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}}$, which increases with temperature.

At high temperatures pH can be less than 7. Thus $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$is the only case that is true.

$043 \quad 10.0$ points

Determine the pH of a 0.000496 M solution of NaOH .

1. 10.7459
2. 10.4928
3. 10.2833
4. 10.6955
5. 10.8506
6. 10.9138
7. 10.8156
8. 10.9523
9. 10.2279
10. 10.7924

Correct answer: 10.6955 .

Explanation:

$[\mathrm{NaOH}]=0.000496 \mathrm{M} \quad \mathrm{pH}=$?

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log \left(2.01613 \times 10^{-11}\right) \\
& =10.6955
\end{aligned}
$$

$044 \quad 10.0$ points

The pH of $0.010 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is 2.24 . Estimate the concentration of PO_{4}^{3-} in the solution. For $\mathrm{H}_{3} \mathrm{PO}_{4}$, the values of $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}$, and $K_{\mathrm{a} 3}$ are $7.6 \times 10^{-3}, 6.2 \times 10^{-8}$, and 2.1×10^{-13}, respectively.

1. $2.1 \times 10^{-13} \mathrm{M}$
$2.5 .8 \times 10^{-3} \mathrm{M}$
2. $6.2 \times 10^{-8} \mathrm{M}$
3. $2.3 \times 10^{-18} \mathrm{M}$ correct
4. $7.6 \times 10^{-3} \mathrm{M}$

Explanation:

$045 \quad 10.0$ points

What is the conjugate base of HPO_{4}^{2-} ?

1. OH^{-}
2. HPO_{4}^{2-}
3. $\mathrm{H}_{3} \mathrm{PO}_{4}$
4. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
5. PO_{4}^{3-} correct

Explanation:

The conjugate base pairs are shown below:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-} \\
& \mathrm{HPO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}
\end{aligned}
$$

$046 \quad 10.0$ points
What is the percent ionization for a weak acid
HX that is $0.40 \mathrm{M} ? K_{\mathrm{a}}=4.0 \times 10^{-7}$.

1. 2.0%
2. 0.10% correct
3. 0.050%
4. 0.020%
5. 0.00020%

Explanation:

$047 \quad 10.0$ points
In the complete neutralization of butanoic acid (a weak acid) with an equal amount of sodium hydroxide (NaOH), the dominant species in the resulting solution is a...

1. weak base correct
2. weak acid
3. strong base
4. neutral salt
5. strong acid

Explanation:

The product of the neutralization of a weak acid is the salt of its conjugate weak base. The product of the neutralization of a weak base is the salt of its conjugate acid.

$048 \quad 10.0$ points

What is the pH of a 0.480 M trimethylamine $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right)$ solution?

1. 8.81
2. 11.48
3. 11.87
4. 8.86
5. 2.13
6. 8.96
7. 2.25

8. 11.74 correct

Explanation:

For trimethlyamine, K_{b} is small enough to use the weak base approximation formula:

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{K_{\mathrm{b}} \times C_{\mathrm{b}}}
$$

$$
\begin{gathered}
0.00558570 \ldots \mathrm{M}=\sqrt{\left(6.5 \times 10^{-5}\right)(0.480 \mathrm{M})} \\
\mathrm{pOH}=-\log (0.00558570 \ldots) \\
\mathrm{pH}=14-2.25292 \ldots \\
\mathrm{pH}=11.747
\end{gathered}
$$

Note: this answer ignores x , so the closest answer should be a reasonable assumption.

$049 \quad 10.0$ points

Which of the following aqueous solutions gives a pH greater than 7 ?

$$
\text { 1. } 10^{-8} \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}
$$

2. $10^{-8} \mathrm{M} \mathrm{HCl}$
3. None of the solutions gives a pH greater than 7. correct
4. $10^{-8} \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
5. $10^{-8} \mathrm{M} \mathrm{HCOOH}$

Explanation:

$050 \quad 10.0$ points
What is $\left[\mathrm{OH}^{-}\right]$when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.2 \times 10^{-5} \mathrm{M}$?

1. $1.2 \times 10^{-10} \mathrm{M}$ correct
2. $6.3 \times 10^{-9} \mathrm{M}$
3. $1.2 \times 10^{-4} \mathrm{M}$
4. $1.0 \times 10^{-7} \mathrm{M}$
5. $8.2 \times 10^{-5} \mathrm{M}$

Explanation:

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.2 \times 10^{-5} \mathrm{M}$

$$
\begin{aligned}
K_{\mathrm{w}} & =\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{14} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \\
& =\frac{1.0 \times 10^{14}}{8.2 \times 10^{-5}}=1.2 \times 10^{-10} \mathrm{M}
\end{aligned}
$$

$051 \quad 10.0$ points

Which pH represents a solution with 1000 times higher $\left[\mathrm{OH}^{-}\right]$than a solution with pH of 5 ?

1. $\mathrm{pH}=3$
2. $\mathrm{pH}=6$
3. $\mathrm{pH}=2$
4. $\mathrm{pH}=8$ correct
5. $\mathrm{pH}=7$
6. $\mathrm{pH}=0.005$
7. $\mathrm{pH}=4$
8. $\mathrm{pH}=5000$
9. $\mathrm{pH}=1$

Explanation:

$\mathrm{pH}=5$

$$
\begin{gathered}
\mathrm{pOH}=14-\mathrm{pH}=14-5=9 \\
{\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-9} \mathrm{M}} \\
{\left[\mathrm{OH}^{-}\right]_{x}=1000\left[\mathrm{OH}^{-}\right]=\left(10^{3}\right)\left(10^{-9} \mathrm{M}\right)} \\
=10^{-6} \mathrm{M} \\
\mathrm{pOH}_{x}=-\log \left(\mathrm{OH}_{x}\right)=6 \\
\mathrm{pH}_{x}=14-\mathrm{pOH}_{x}=14-6=8
\end{gathered}
$$

